

Fakultät Maschinenwesen, Institut für Energietechnik, Professur für Wasserstoff- und Kernenergietechnik

Prof. Dr.-Ing. habil. Antonio Hurtado

Laserfügen von Siliciumcarbid-Bauteilen für den Hochtemperatureinsatz

Wolfgang Lippmann, Marion Herrmann

Workshop Hochtemperatur-Verbundwerkstoffe für den Leichtbau 2015

Hanau, 22.01.2015

- 1. Gliederung
- Zielsetzung
- Anforderungen an die Fügetechnologie
- Materialauswahl Wärmeübertrager-Rohr
- Laserfügen von SiC
- Lotauswahl
- Zusammenfassung und Ausblick

2. Zielsetzung

- Entwicklung eines Fügeverfahrens zum gasdichten Verbinden keramischer Bauteile
- Spezielle Anwendung: Fügen von Siliciumcarbid-Rohren für Wärmeübertrager

3. Anforderungen an die Fügetechnologie

- Einsatztemperatur der Bauteile: >800°C
- Fügetemperatur >1.200°C
- Nur lokales Aufheizen der Komponenten → ausschließlich im Bereich der Fügezone
- Schneller Prozess (< 5 min.)
- An freier Atmosphäre und/oder unter Vakuum durchführbar
- Gut regelbar / automatisierbar
- Lösung: laserinduziertes Löten

4. Materialauswahl – Wärmeübertrager-Rohr

4. Materialauswahl – Wärmeübertrager-Rohr

Faserverstärkte SiC_f-SiC Rohre können die Betriebssicherheit und Zuverlässigkeit stark verbessern

Variante 1

- Laserstrahl stationär, Rohr rotiert
- Einsetzbar an Luft und unter Vakuum

Rohrsegmente (D= 50 mm, L=70 mm)

Variante 2

- Laserstrahl rotiert über Ringspiegel, Rohr fixiert
- Einsetzbar an Luft und unter Vakuum

Technische Randbedingungen:

- Eingesetzter Laser: Diode (915...1030 nm)
- Max. Strahlleistung: 10 kW (cw)
- Laserstrahlung über Faseroptik
- lokales Aufheizen der Fügezone

Querschnitt Fügenaht

- Diodenlaser (808 und 940 nm)
- Leistungsdichte: 3,3 ... 4,7 W·mm⁻²
- SSiC- Kapselteile
- StarCeram S (H.C.Starck)
- Ø: 12 mm, h: 16 mm, s: 2 mm

Temperaturmessung

(Thermokamera)

Laserinduziertes Löten, Leistung- und Temperaturverlauf

Spezifische Kosten für Dioden-Leistungslaser

Martinsen, Robert: Industrial markets beckon for high-power diode lasers; High-Power Diode Lasers; OLE Octobre 2007; optics.org; Abrufdatum: 17.03.2014

22.01.2015 Laserfügen von Siliciumcarbid-Bauteilen für den Hochtemperatureinsatz

Anforderungen an den Lot-Werkstoff

- → Widerstandsfähig gegenüber Wärmeträger und Umgebungsatmosphäre
- → Gute Benetzung der Keramik
- → Temperaturbeständig >800°C und wechsellastbeständig
- → Schmelztemperatur des Lotes im Bereich von 1.200 °C bis 1.500°C

Variante 1: Glaslote aus dem System Y₂O₃-Al₂O₃-SiO₂

- \rightarrow Therm. Ausdehnungskoeffizient entspricht dem von SSiC
- → <u>NICHT resistent g</u>egenüber Alkalimetallen
- → <u>Resistent</u> gegenüber Zn
- → Fügetemperatur ca. **1.400°C**

Variante 2: Metallote aus dem System Ni-Ti und Ni-Ta

- → Therm. Ausdehnungskoeffizient > dem von SSiC, jedoch duktil
- → <u>Resistent g</u>egenüber Na
- → <u>Nicht resistent</u> gegenüber Zn
- → Fügetemperatur >1.400°C

- Beispiel: Laserlöten von SSiC mit Glasloten aus dem System Y₂O₃-Al₂O₃-SiO₂
- Zielanwendungstemperatur f
 ür gef
 ügte Bauteile liegt
 über 900°C,
 d.h.
 über dem Glas-Transformationsbereich der meisten bekannten Gläser
- → für eine thermische Beständigkeit >900°C muss eine gezielte Kristallisation stattfinden

Untersuchungsgegenstand waren:

- Welcher Zusammenhang besteht zwischen Lotzusammensetzung und dem ausgebildetem Nahtgefüge?
- Welchen Einfluss haben die laserprozessbedingten hohen Abkühlgeschwindigkeiten auf das Nahtgefüge?
- Welchen Strukturänderungen unterliegen diese Gefüge während eines Einsatzes bei hohen Temperaturen?

• Beispiel: Laserlöten von SSiC mit Glasloten aus dem System Y₂O₃-Al₂O₃-SiO₂

Kristallphase	Wärmeausdehnungskoeffizient	
Y ₂ O ₃ *2SiO ₂	3,9*10 ⁻⁶ /K	
Y ₂ O ₃ *SiO ₂	7,0*10 ⁻⁶ /K	
YAG	9,2*10 ⁻⁶ /K	
Mullit 3Al ₂ O ₃ ·2SiO ₂	4,5*10⁻ ⁶ /K	
SiC	4,5 4,6 *10 ⁻⁶ /K	

Lot [ma%]	Y ₂ O ₃	AI_2O_3	SiO ₂
YAISi 1	38	27	35
YAISi 16	51	38	11
YAISi 23	61	11	28
YAISi 30	48,7	12,5	38,8

Phasendiagramm nach Fabrichnava [1] [1] Fabrichnaya, O. et al., Zeitschrift f. Metallkunde, 92 (2001) 1083-1097.

• Beispiel: Laserlöten von SSiC mit Glasloten aus dem System Y₂O₃-Al₂O₃-SiO₂

22.01.2015 Laserfügen von Siliciumcarbid-Bauteilen für den Hochtemperatureinsatz

Beispiel: Laserlöten von SSiC mit Glasloten aus dem System Y₂O₃-Al₂O₃-SiO₂

Bestimmung der Helium-Leckraten an gefügten Kapselverbunden

 Beispiel: Laserlöten von SSiC mit Glasloten aus dem System Y₂O₃-Al₂O₃-SiO₂ Thermische Belastung gefügter Kapseln (YAISi1, 900°C)

- Keimbildung als vorherrschende Prozess
- Ausheilen durch plastisch-viskoses Fließen \rightarrow zunächst Verringerung der Leckrate
- parallel langsame Kristallisation \rightarrow Erhöhung der Leckrate
- weitgehend gleichmäßige Entwicklung der Leckraten bei unterschiedlichen Proben

 Beispiel: Laserlöten von SSiC mit Glasloten aus dem System Y₂O₃-Al₂O₃-SiO₂ Thermische Belastung gefügter Kapseln (YAISi1, 1.050°C)

- das Lot in der Fügenaht ist weitgehend kristallisiert (Mullit, Y-Silikate)
- schichtartiges Wachstum der Disilikate, unterbrochen durch eine Al-haltige Phase
- inhomogene Verteilung beider Kristallphasen
- differenzierte Entwicklung der Leckraten auf insgesamt hohem Niveau

 Beispiel: Laserlöten von SSiC mit Glasloten aus dem System Y₂O₃-Al₂O₃-SiO₂ Thermische Belastung gefügter Kapseln (YAISi30. 1.050°C)

- das Lot in der Fügenaht ist vollständig kristallisiert, Y-Silikate bis zu 50 µm groß
- feinteilige Sekundärkristallisation in den Zwischenräumen der Primärkristalle
- höhere Dichte der Kristalle führen zu einem Anstieg der Leckraten
- differenzierte Entwicklung der Leckraten als Ergebnis inhomogener Nahtstrukturen

Beispiel: Laserlöten von SSiC mit Glasloten aus dem System Y₂O₃-Al₂O₃-SiO₂

Fazit für das Lot YAlSi1:

- Verarbeitungstemperaturen ≈1450°C
- ausreichende Viskosität
- niedrige Leckraten in allen Testphasen
- gleichzeitige Kristallisation von Mullit und Y-Disilikat
- → Lot ist grundsätzlich zum Fügen der Wärmeübertrager-Rohre geeignet

7. Erfahrungen zum Laserfügen von SiC_f - SiCN

- Fügen in N₂-Atmosphäre in Kammer
- Lot: YAISiO + SiC
- Maximale Temperatur: 1.330 °C
- HT-stabile SiC-Faser UbE SA 3

Bauteile gefertigt von:

Hagen Klemm , Fraunhofer-Institut für Keramische Technologien und Systeme, IKTS, Winterbergstr. 28, 01277 Dresden, Germany; Katrin Schönfeld, TU Dresden, Institut für Werkstoffwissenschaft (ANW)

7. Erfahrungen zum Laserfügen von SiC_f - SiCN

- Lot wird von Faserverbund "aufgesogen"
- Laserstrahlung wird von Fasern und Grundmaterial unterschiedlich absorbiert
- Anisotrope Wärmeleitfähigkeit in Abhängigkeit des Faserlaufes

8. Zusammenfassung

 Mittels Laserfügeverfahren können keramische Rohre für Wärmeübertrager gefügt werden

9. Weiterführende Arbeiten

- Analyse des <u>Langzeitverhaltens</u> der Fügezone hinsichtlich Wechselwirkungen:
 - Wärmeträger-Keramikhüllrohr,
 - Wärmeträger-Lotmaterial,
 - Keramik-Lot
 - Keramik-Lot-Außenatmosphäre
- Lastwechselverhalten der Wärmeübertrager-Rohre
- Weiterentwicklung der Fügetechnologie für Faserkeramiken

Danksagung

Die Arbeiten wurden von der Europäischen Kommission und der Sächsischen Aufbaubank gefördert.

Europa fördert Sachsen.

